1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
use proptest::{
arbitrary::any,
prelude::*,
strategy::{Strategy, ValueTree},
test_runner::TestRunner,
};
use rand::Rng;
use std::collections::HashMap;
use crate::ast::*;
#[derive(Debug, PartialEq)]
pub struct Environment<'a> {
parent: Box<Option<&'a Environment<'a>>>,
bindings: HashMap<String, Value>,
}
impl<'a> Environment<'a> {
pub fn new() -> Self {
Environment {
parent: Box::new(None),
bindings: HashMap::new(),
}
}
fn bind(&mut self, var: &str, value: &Value) {
self.bindings.insert(var.to_string(), value.clone());
}
fn extends(&'a self) -> Self {
Environment {
parent: Box::new(Some(self)),
bindings: HashMap::new(),
}
}
fn lookup(&self, var: &str) -> Option<&Value> {
self.bindings.get(var).or_else(|| match *self.parent {
Some(parent) => parent.lookup(var),
None => None,
})
}
}
impl<'a> Default for Environment<'a> {
fn default() -> Self {
Self::new()
}
}
pub fn eval_all(values: &[Value]) -> Vec<Value> {
let mut env = Environment::new();
values.iter().map(|v| eval_whnf(v, &mut env)).collect()
}
/// Reduce the given value to weak head normal form using call-by-name
/// evaluation strategy.
///
/// call-by-name reduces the leftmost outermost redex first, which is
/// not under a lambda abstraction.
pub fn eval_whnf(arg: &Value, env: &mut Environment) -> Value {
match arg {
Value::Def(var, value) => {
env.bind(var, value);
Value::Bool(true) // TODO: return a more meaningful value?
}
Value::Let(var, value, expr) => {
let mut newenv = env.extends();
newenv.bind(var, value);
eval_whnf(expr, &mut newenv)
}
Value::App(l, r) => match eval_whnf(l, env) {
Value::Lam(v, body) => eval_whnf(&subst(&v, &body, r), env),
Value::Sym(var) => match env.lookup(&var) {
Some(val) => eval_whnf(&Value::App(Box::new(val.clone()), r.clone()), env),
None => arg.clone(),
},
other => Value::App(Box::new(other), r.clone()),
},
Value::Sym(var) => env.lookup(var).unwrap_or(arg).clone(),
other => other.clone(),
}
}
fn subst(var: &str, body: &Value, e: &Value) -> Value {
match body {
Value::Sym(x) if x == var => e.clone(),
Value::Lam(x, b) if x == var => {
let y = gensym();
let bd = subst(x, b, &Value::Sym(y.clone()));
Value::Lam(y, Box::new(bd))
}
Value::Lam(x, b) => Value::Lam(x.to_string(), Box::new(subst(var, b, e))),
Value::App(l, r) => Value::App(Box::new(subst(var, l, e)), Box::new(subst(var, r, e))),
other => other.clone(),
}
}
pub fn type_of_all(values: &[Value]) -> Vec<Type> {
let mut env = Environment::new();
values.iter().map(|v| type_of(v, &mut env).unwrap()).collect()
}
fn type_of(v: &Value, env: &mut Environment) -> Result<Type, TypeError> {
match v {
Value::Num(_) => Ok(Type::Int),
_ => Err(TypeError::UnknownType(v.clone())),
}
}
pub fn gensym() -> String {
let mut rng = rand::thread_rng();
let n1: u8 = rng.gen();
format!("x_{}", n1)
}
pub fn generate_expr(size: u32, runner: &mut TestRunner) -> Value {
match size {
0 | 1 => {
let n = any::<u16>().new_tree(runner).unwrap().current();
Value::Num(n.into())
}
2 => Value::Sym(ascii_identifier().new_tree(runner).unwrap().current()),
3 => any_sym().new_tree(runner).unwrap().current(),
4 => simple_app().new_tree(runner).unwrap().current(),
5 => nested_simple_app().new_tree(runner).unwrap().current(),
6 => simple_lambda().new_tree(runner).unwrap().current(),
7 => app_to_lambda().new_tree(runner).unwrap().current(),
8 => multi_app().new_tree(runner).unwrap().current(),
_ => any::<u32>()
.prop_flat_map(gen_terms)
.new_tree(runner)
.unwrap()
.current(),
}
}
pub fn generate_expression_to_type(size: u32, runner: &mut TestRunner) -> Vec<Value> {
match size {
_ => {
let n = any::<u16>().new_tree(runner).unwrap().current();
vec![Value::Num(n.into())]
}
}
}
pub fn generate_exprs(size: u32, runner: &mut TestRunner) -> Vec<Value> {
let sz = (0..size).new_tree(runner).unwrap().current();
(0..sz)
.collect::<Vec<_>>()
.into_iter()
.map(|_| generate_expr(size, runner))
.collect()
}
fn simple_app() -> impl Strategy<Value = Value> {
let leaf = prop_oneof![any_num(), any_sym()];
(leaf.clone(), leaf.clone()).prop_map(|(l, r)| Value::App(Box::new(l), Box::new(r)))
}
fn multi_app() -> impl Strategy<Value = Value> {
let leaf = prop_oneof![any_num(), any_sym()];
(leaf.clone(), leaf.clone()).prop_map(|(l, r)| Value::App(Box::new(l), Box::new(r)))
}
fn any_num() -> impl Strategy<Value = Value> {
any::<i32>().prop_map(Value::Num)
}
fn nested_simple_app() -> impl Strategy<Value = Value> {
let leaf = prop_oneof![any_num(), ascii_identifier().prop_map(Value::Sym)];
leaf.prop_recursive(4, 128, 5, move |inner| {
(inner.clone(), inner.clone()).prop_map(|(l, r)| Value::App(Box::new(l), Box::new(r)))
})
}
fn any_sym() -> impl Strategy<Value = Value> {
identifier().prop_map(Value::Sym)
}
fn simple_lambda() -> impl Strategy<Value = Value> {
// TODO: there's nothing to guarantee the variable appears in the body
(ascii_identifier(), nested_simple_app()).prop_map(|(v, b)| Value::Lam(v, Box::new(b)))
}
fn app_to_lambda() -> impl Strategy<Value = Value> {
let lam = simple_lambda();
let arg = prop_oneof![any_num(), any_sym(), nested_simple_app()];
(lam, arg).prop_map(|(l, a)| Value::App(Box::new(l), Box::new(a)))
}
/// Cantor pairing function
/// See https://en.wikipedia.org/wiki/Pairing_function
fn pairing(k: u32) -> (u32, u32) {
let a = ((((8 * (k as u64) + 1) as f64).sqrt() - 1.0) / 2.0).floor();
let b = (a * (a + 1.0)) / 2.0;
let n = (k as f64) - b;
(n as u32, (a - n) as u32)
}
fn gen_terms(u: u32) -> impl Strategy<Value = Value> {
if u % 2 != 0 {
let j = (u - 1) / 2;
if j % 2 == 0 {
let k = j / 2;
let (n, m) = pairing(k);
let r = (gen_terms(n), gen_terms(m))
.prop_map(move |(l, r)| Value::App(Box::new(l), Box::new(r)));
r.boxed()
} else {
let k = (j - 1) / 2;
let (n, m) = pairing(k);
let r = gen_terms(m).prop_map(move |v| Value::Lam(format!("x_{}", n), Box::new(v)));
r.boxed()
}
} else {
let j = u / 2;
Just(Value::Sym(format!("x_{}", j))).boxed()
}
}
#[cfg(test)]
mod lambda_test {
use crate::{ast::Type, parser::parse};
use super::{Environment, Value, eval_all, eval_whnf, type_of};
fn parse1(string: &str) -> Value {
parse(string).pop().unwrap()
}
fn eval1(value: &Value) -> Value {
eval_whnf(value, &mut Environment::new())
}
#[test]
fn evaluating_a_non_reducible_value_yields_itself() {
let value = parse1("(foo 12)");
assert_eq!(value, eval1(&value));
}
#[test]
fn evaluating_application_on_an_abstraction_reduces_it() {
let value = parse1("((lam x x) 12)");
assert_eq!(Value::Num(12), eval1(&value));
}
#[test]
fn substitution_occurs_within_abstraction_body() {
let value = parse1("(((lam x (lam y x)) 13) 12)");
assert_eq!(Value::Num(13), eval1(&value));
}
#[test]
fn substitution_occurs_within_application_body() {
let value = parse1("(((lam x (lam y (y x))) 13) 12)");
assert_eq!(
Value::App(Box::new(Value::Num(12)), Box::new(Value::Num(13))),
eval1(&value)
);
}
#[test]
fn substitution_does_not_capture_free_variables() {
let value = parse1("(((lam x (lam x x)) 13) 12)");
assert_eq!(Value::Num(12), eval1(&value));
}
#[test]
fn interpretation_applies_to_both_sides_of_application() {
let value = parse1("((lam x x) ((lam x x) 12))");
assert_eq!(Value::Num(12), eval1(&value));
}
#[test]
fn reduction_is_applied_until_normal_form_is_reached() {
let value = parse1("((((lam y (lam x (lam y (x y)))) 13) (lam x x)) 11)");
assert_eq!(Value::Num(11), eval1(&value));
}
#[test]
fn reduction_always_select_leftmost_outermost_redex() {
// this should not terminate if we evaluate the rightmost redex first, eg.
// applicative order reduction
let value = parse1("((lam x 1) ((lam x (x x)) (lam x (x x))))");
assert_eq!(Value::Num(1), eval1(&value));
}
#[test]
fn defined_symbols_are_evaluated_to_their_definition() {
let values = parse("(def foo 12) foo");
assert_eq!(vec![Value::Bool(true), Value::Num(12)], eval_all(&values));
}
#[test]
fn let_expressions_bind_symbol_to_expression_in_environment() {
let values = parse("(let (foo (lam x x)) (foo 12))");
assert_eq!(vec![Value::Num(12)], eval_all(&values));
}
#[test]
fn let_expressions_introduce_new_scope_for_bindings() {
let values = parse("(let (foo (lam x x)) ((let (foo foo) foo) 13))");
assert_eq!(vec![Value::Num(13)], eval_all(&values));
}
#[test]
fn bound_symbol_in_higher_scope_are_resolved() {
let values = parse("(let (id (lam x x)) (let (foo 12) (id foo)))");
assert_eq!(vec![Value::Num(12)], eval_all(&values));
}
#[test]
fn type_of_a_number_is_int() {
let value = parse1("12");
let ty = type_of(&value, &mut Environment::new()).unwrap();
assert_eq!(Type::Int, ty);
}
}
|